(1) 영공간의 직교보공간(직교여공간) 행렬 A가 있다. 이전 글에서 행공간은 열공간의 전치와 같다고 했다. 따라서, C(AT) = R(A)라고 할 수 있따. 그리고 C(AT)⊥ = N(A) 와 같다고 했다. 또한, C(A)⊥ = N(AT) (열공간의 직교여공간은 좌영공간과 같다) 14-5에서 다룬 것처럼 ⊥의 ⊥는 원래의 행렬로 돌아오기 때문에, 영공간의 직교여공간은 어떻게 될까? N(A)⊥ = (C(AT)⊥)⊥ = C(AT). 즉, A 영공간의 직교보공간은 A의 전치의 열공간과 같다. 좌영공간의 직교여공간은 어떻게 될까? N(AT)⊥ = (C(A)⊥)⊥ = C(A) 즉, A 좌영공간의 직교보공간은 A의 열공간과 같다. 정리하자면, N(A) = R(A)⊥ 이고, R(A) = N(A)⊥ 이다. N(AT)..