SInce 20180106

  • 홈
  • 태그
  • 방명록
  • 글쓰기

eigenvalue 1

18-2. 고유값 결정식의 증명

(1) 고유값 결정식 Rn에서 Rn으로 사상하는 변환 T가 있고, T(x) = Ax와 같이 표현할 수 있다. 벡터 v에 대해서 변환을 취하면, Av가 되고, 이 결과는 v에 어떤 계수 λ만큼 곱해진 λv가 된다고 해보자. 이를 만족하는 벡터 v를 고유벡터(eigen vector)라고 하고, 계수를 고유값(eigen value)라고 한다. 고유벡터나 고유값을 구하기 위해서는, Av = λv를 만족하는 해를 구해야 하는데, 이를 어떻게 구할 수 있을까? v가 영벡터이면 된다. v가 영벡터라면 방정식을 확실히 만족하게 되지만, 부분공간을 생성하는 기저벡터의 수가 늘지 않기에 기저에 어떤 것도 추가하지 못하며, 고유값도 어떤 값이든 다 될 수 있다. 따라서, 의미있는 정보를 갖지 못하는 v=0을 제외하고, 영벡..

선형대수(Linear Algebra) 2023.06.23
이전
1
다음
더보기
프로필사진

그냥...

  • 전체보기 (160)
    • Git과Github (1)
    • Python (33)
      • 기초 (9)
      • IDE, 버전관리, 도커 (8)
      • Numpy (3)
      • Pandas (5)
      • Tensorflow & Keras (1)
      • NLP(자연어처리) (5)
      • NLP+Pytorch (2)
    • 선형대수(Linear Algebra) (105)
    • 알고리즘 (1)
    • BlockChain (3)
    • 여행기 (13)
      • 중국, 러시아(18.1.12~1.26) (4)
      • 일본(다카마쓰, 23.4.29~5.2) (4)
      • 중국(광저우, 둥관, 포산, 23.06.03~06.. (5)
    • 여러 책들 후기 (2)
    • Kali Linux (2)

Tag

변환행렬, 선형대수, 정규직교집합, 영공간, 정규직교기저, 기저, 열공간, 가역성, 선형대수학, 선형독립, 행렬식, 선형변환, 고유값, 파이썬, linear algebra, 고유벡터, Python, 정사영, 부분공간, 기저변환,

최근글과 인기글

  • 최근글
  • 인기글

최근댓글

공지사항

  • 디자인도 그지같다
  • 가독성은 떨어진다

페이스북 트위터 플러그인

  • Facebook
  • Twitter

Archives

Calendar

«   2025/05   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :

Copyright © Kakao Corp. All rights reserved.

티스토리툴바