(1) 정규직교기저로 정사영 계산하기 저번 글에서 정규직교기저가 좋은 좌표계, 즉 좌표를 쉽게 알 수 있는 좌표계를 만드는 것을 보았다. 정규직교기저를 활용하면 유용한 다른 이유들에 대해서 알아보자. 어떤 부분공간 V가 Rn의 부분공간이고, B = {v1, v2, ..., vk}라는 V의 정규직교집합 B가 있다. x ∈ Rn 이면, x = v + w = projvx + w 와 같이 표현할 수 있었다. 이 때, v ∈ V 이고 w ∈ V⊥ 이다. (x는 V 상에 존재하는지 알 수 없다.) 기저 벡터들을 열로 가지고 있는 행렬 A가 있다고 하자. A = [v1, v2, ..., vk] 행렬이라면, x를 부분공간 V에 정사영한 벡터를 찾기 위해서 projVx = A(ATA)-1ATx 라는 식을 계산해야 했다...