(1) 열공간의 차원(랭크) 이전에는 행렬의 열공간은 생각보다 구하기 단순하다는 것을 볼 수 있었다. A의 열공간은 A의 열벡터들의 선형결합식과 같고, 열벡터들의 생성이다. 그래서 우선 열벡터들을 각각 a1, a2, a3, a4, a5로 불러보자. 그러면 A의 열공간은 span(a1, a2, a3, a4, a5)과 같다고 할 수 있다. 우리가 이번에 알고 싶은 것은 열벡터들이 열공간의 기저가 되는지이다. A의 열벡터의 기저 = C(A)를 생성하는 벡터 이다. 기저 벡터들은 모두 선형독립이여야 한다. 그래서 우선은 A를 기약행사다리꼴로 만들어서, 피벗벡터와 자유벡터를 구해보자. 기약행사다리꼴 R은 [1, 0, -1, 0, 4 0, 1, 2, 0, 1 0, 0, 0, 1, -3 0, 0, 0, 0, 0] 이..